Journal Description
Foods
Foods
is an international, peer-reviewed, open access journal on food science published semimonthly online by MDPI. The Italian Society of Food Sciences (SISA) and Spanish Nutrition Foundation (FEN) are affiliated with Foods and their members receive discounts on the article processing charges.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within Scopus, SCIE (Web of Science), PubMed, PMC, FSTA, AGRIS, PubAg, and other databases.
- Journal Rank: JCR - Q1 (Food Science and Technology) / CiteScore - Q1 (Health Professions (miscellaneous))
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 14.5 days after submission; acceptance to publication is undertaken in 2.5 days (median values for papers published in this journal in the second half of 2024).
- Recognition of Reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.
Impact Factor:
5.1 (2024);
5-Year Impact Factor:
5.6 (2024)
Latest Articles
Monitoring of the Physicochemical Properties and Aflatoxin of Aspergillus flavus-Contaminated Peanut Kernels Based on Near-Infrared Spectroscopy Combined with Machine Learning
Foods 2025, 14(13), 2186; https://doi.org/10.3390/foods14132186 (registering DOI) - 22 Jun 2025
Abstract
This study explores the application of near-infrared (NIR) spectroscopy combined with machine learning for the non-destructive detection of aflatoxin in peanuts contaminated by Aspergillus flavus (A. flavus). The key innovation lies in the development of an optimized spectral processing pipeline that
[...] Read more.
This study explores the application of near-infrared (NIR) spectroscopy combined with machine learning for the non-destructive detection of aflatoxin in peanuts contaminated by Aspergillus flavus (A. flavus). The key innovation lies in the development of an optimized spectral processing pipeline that effectively overcomes moisture interference while maintaining high sensitivity to low aflatoxin concentrations. NIR spectra were collected from peanut samples at different incubation times within the spectral range of 950 to 1650 nm. Spectral data were preprocessed, and Competitive Adaptive Reweighted Sampling (CARS) selected ten characteristic bands. Correlation analysis was performed to examine the relationships between physicochemical properties, characteristic bands, and aflatoxin content. Three machine learning models—Backpropagation Neural Network (BPNN), Support Vector Machine (SVM), and Random Forest (RF)—were used to predict aflatoxin levels. The SNV-SVM model demonstrated superior performance, achieving calibration metrics (R2C = 0.9945, RMSEC = 9.92, RPDC = 14.59) and prediction metrics (R2P = 0.9528, RMSEP = 19.58, RPDP = 7.01), along with leave-one-out cross-validation (LOOCV) results (R2 = 0.9834, RMSE = 11.20). The results demonstrate that NIR spectroscopy combined with machine learning offers a rapid, non-destructive approach for aflatoxin detection in peanuts, with significant implications for food safety and agricultural quality control.
Full article
(This article belongs to the Special Issue Enhancing Food Safety Through Artificial Intelligence: Innovations, Challenges, and Opportunities)
►
Show Figures
Open AccessArticle
Implicating Ultrasonication and Heat–Moisture Treatments as a Green and Eco-Friendly Approach for Dual Physical Modification of Eleocharis tuberosa Starch to Improve Its Physico-Chemical and Functional Properties
by
Zafarullah Muhammad, Rabia Ramzan, Chen Ana, Muhammad Afzaal, Adnan Abbas, Muhammad Safiullah Virk, Abdullah, Wu Sun and Guoqiang Zhang
Foods 2025, 14(13), 2185; https://doi.org/10.3390/foods14132185 (registering DOI) - 22 Jun 2025
Abstract
Dual-physical modification is an eco-friendly and waste-free approach for enhancing the functionality of native starches compared with a single modification. In the present study, the individual and combined interrelating effects of hydrothermal (heat moisture (HM) with 15%, 20%, and 25% moisture) and non-thermal
[...] Read more.
Dual-physical modification is an eco-friendly and waste-free approach for enhancing the functionality of native starches compared with a single modification. In the present study, the individual and combined interrelating effects of hydrothermal (heat moisture (HM) with 15%, 20%, and 25% moisture) and non-thermal (ultrasonication (US) with 200, 400, and 600 power (W)) on the physical modification of Eleocharis tuberosa (Chinese water chestnut (CWCS)) starch were studied. Furthermore, their effects on the morphology, FTIR, XRD, crystallinity, thermal, pasting, swelling power, solubility, rheological characteristics, and in vitro digestibility of native and modified starches were investigated. The results indicated a consistent B-type structure of CWCS, with a significant decrease in the crystallinity (22.32 ± 0.04–28.76 ± 0.02%), which was linked with ΔH (19.65 ± 0.01–12.18 ± 0.06 Jg−1) and amylose content (34.67 ± 0.07–40.73 ± 0.11%). The absorbance ratio 1048/1025 specified that the combination of HM-US compacted the short-range order degree up to 1.30 for HM25–US600-CWCS. The starch treated with HM, followed by the US, considerably amplified the setback, peak, and final viscosities compared with the HM-treated starch. The rheological analysis demonstrated that the fluidity of CWCS was enhanced (G′ > G″, tan δ < 1) by the synergistic effect of HM and US, increasing the resistivity toward deformation during paste development. The dual-modified starch exhibited a slower glucose release rate with increasing moisture (25%) during HM and 600 W during the US, with higher RS contents of 45.83 ± 0.28% and 43.09 ± 0.12%, respectively. Dual-physical modification exhibited a significant aptitude for modifying native starches structurally and functionally as a substitute for product formulation with a low glycemic index.
Full article
(This article belongs to the Special Issue Advance in Starch Chemistry and Technology)
►▼
Show Figures

Figure 1
Open AccessArticle
The Effect of β-Glucans from Oats and Yeasts on the Dynamics of Ice Crystal Growth in Acidophilic Ice Cream Based on Liquid Hydrolyzed Whey Concentrate
by
Artur Mykhalevych, Galyna Polishchuk, Agata Znamirowska-Piotrowska, Anna Kamińska-Dwórznicka, Maciej Kluz and Magdalena Buniowska-Olejnik
Foods 2025, 14(13), 2184; https://doi.org/10.3390/foods14132184 (registering DOI) - 22 Jun 2025
Abstract
Improving the texture and shelf-life of whey-based ice cream remains a key challenge in clean-label food formulation. This study investigated the effects of different stabilizing ingredients—including Cremodan SI 320 (0.6%), oat β-glucan (0.25–0.5%), and yeast β-glucan (0.25–0.5%)—on the physicochemical properties and freezing dynamics
[...] Read more.
Improving the texture and shelf-life of whey-based ice cream remains a key challenge in clean-label food formulation. This study investigated the effects of different stabilizing ingredients—including Cremodan SI 320 (0.6%), oat β-glucan (0.25–0.5%), and yeast β-glucan (0.25–0.5%)—on the physicochemical properties and freezing dynamics of ice cream made from liquid hydrolyzed demineralized whey concentrate. Compared to Cremodan, oat β-glucan significantly lowered the freezing point, improved overrun, and enhanced melting resistance. Yeast β-glucan led to the smallest initial ice crystals (8.49 ± 0.37 μm) and minimal growth after one month (9.52 ± 0.16 μm), outperforming the control and Cremodan samples in crystal stability. The chemical composition and textural properties of each formulation were also evaluated. These findings demonstrate that oat and yeast β-glucans function as natural stabilizers, offering clean-label potential and improved structural integrity in frozen dairy desserts.
Full article
(This article belongs to the Special Issue Nutrients and Functional Ingredients in Dairy Products)
►▼
Show Figures

Figure 1
Open AccessArticle
Integrated Metabolomic and Transcriptomic Analysis of Volatile Organic Compound Biosynthesis During Mung Bean (Vigna radiata) Seed Development
by
Nan Xiang, Yihan Zhao, Bing Zhang, Honglin Chen and Xinbo Guo
Foods 2025, 14(13), 2183; https://doi.org/10.3390/foods14132183 (registering DOI) - 22 Jun 2025
Abstract
Mung bean (Vigna radiata L.) is globally cultivated and has been widely used in the food industries. Other than nutrients, the composition of the volatile organic compounds (VOCs) often influences the quality of mung bean-based products. However, the dynamics of VOCs and
[...] Read more.
Mung bean (Vigna radiata L.) is globally cultivated and has been widely used in the food industries. Other than nutrients, the composition of the volatile organic compounds (VOCs) often influences the quality of mung bean-based products. However, the dynamics of VOCs and the flavor changes during mung bean seed development remain unexplored. This study investigated the VOC and flavor composition in four mung bean varieties by integrating relative odor activity value (ROAV) evaluation and transcriptomic analysis. A total of 65 VOCs were identified, with eucalyptol serving as a key maturity indicator in LL655 and SH-1, while nonanal contributed significantly to the characteristic beany flavor across all varieties. Transcriptomic analysis revealed four downregulated geranylgeranyl diphosphate synthase genes during seed development, leading to terpenoid accumulation patterns. Terpenoids, including trans-beta ocimene and gamma-terpinene, appeared to be regulated by transcription factors (TFs) from the RLK-Pelle, WRKY, AP2/ERF, bHLH, and bZIP families. Additionally, two MYB TFs showed potential roles in modulating the accumulation of phenylpropanoid/benzenoid derivatives. This study provides a comprehensive understanding of the VOC accumulation and flavor variation during mung bean seed development, enriches the knowledge of flavor chemistry in mung bean varieties, and facilitates a theoretical foundation for optimizing and developing mung bean-based products.
Full article
(This article belongs to the Section Foodomics)
►▼
Show Figures

Figure 1
Open AccessArticle
Effect of Tricholoma matsutake Powder and Colored Rice Flour on Baking Quality and Volatile Aroma Compound of Cookie
by
Yuyue Qin, Shu Wang, Haiyan Chen, Yongliang Zhuang, Qiuming Liu, Shanshan Xiao and Charles Brennan
Foods 2025, 14(13), 2182; https://doi.org/10.3390/foods14132182 (registering DOI) - 22 Jun 2025
Abstract
In recent years, the consumers’ demand for healthy foods has been increased. To address the dietary related diseases, the food products enriched with mushroom or colored rice were promoted. The effects of Tricholoma matsutake powder and colored rice flour on baking quality and
[...] Read more.
In recent years, the consumers’ demand for healthy foods has been increased. To address the dietary related diseases, the food products enriched with mushroom or colored rice were promoted. The effects of Tricholoma matsutake powder and colored rice flour on baking quality and volatile aroma compound of cookies were investigated. Texture analyzer, and electronic nose (e-nose) were used to analyze the physicochemical, structural, and digestibility properties and volatile aroma compound of cookie. With the content of Tricholoma matsutake powder and colored rice flour increased, the hardness and free amino acid content increased. Cookie in terms of weaker network structure, relatively crispy cookie texture, and better in vitro digestion activity was obtained with appropriate amount replacement. The cookie sample contained with 5% Tricholoma matsutake and 20% red rice exhibited acceptable hardness and lowest starch hydrolysis rate. The volatile aroma compounds were also affected by the wheat flour substitution. The results indicated that Tricholoma matsutake powder and colored rice flour substitution improved the baking quality of cookie.
Full article
(This article belongs to the Special Issue Cereal: Storage, Processing, and Nutritional Attributes (Third Edition))
Open AccessArticle
Influence of Cooking Methods on Flavor Parameters and Sensory Quality of Tibetan Sheep Meat Examined Using an Electronic Nose, an Electronic Tongue, GC–IMS, and GC–MS
by
Shipeng Ge, Lijuan Han, Shengzhen Hou, Zhenzhen Yuan, Linsheng Gui, Shengnan Sun, Chao Yang, Zhiyou Wang and Baochun Yang
Foods 2025, 14(13), 2181; https://doi.org/10.3390/foods14132181 (registering DOI) - 22 Jun 2025
Abstract
To explore the influence of cooking methods on the flavor parameters of Tibetan sheep, various techniques such as atmospheric-pressure (AP), high-pressure (HP), atmospheric-pressure high-pressure (APHP), and high-pressure atmospheric-pressure (HPAP) cooking were tested. The results indicated that APHP and HP cooking yielded the best
[...] Read more.
To explore the influence of cooking methods on the flavor parameters of Tibetan sheep, various techniques such as atmospheric-pressure (AP), high-pressure (HP), atmospheric-pressure high-pressure (APHP), and high-pressure atmospheric-pressure (HPAP) cooking were tested. The results indicated that APHP and HP cooking yielded the best sensory qualities, accounting for 26.15% and 25.51%, respectively. The HP group had the highest amino acid content at 34%, enhancing the meat’s sweet taste due to alanine, glycine, arginine, and methionine. Among 40 detected fatty acids, the order of saturated fatty acid (SFA), monounsaturated fatty acid (MUFA), polyunsaturated fatty acid (PUFA), and n-6/n-3 content was AP > APHP > HPAP > HP (p < 0.05). An electronic tongue and nose identified aroma components across the four cooking methods. Similarities in aroma were observed among the samples after cooking, while significant differences were found in the aroma components between the AP group and the other three cooking methods (p < 0.05). The gas chromatography–ion mobility spectrometry (GC–IMS) and gas chromatography–mass spectrometry (GC–MS) analyses of the meat in the four groups indicated that there were significant differences in volatile compounds among meat cooked with different methods (p < 0.05), with 56 and 365 flavor compounds detected by the two analytical techniques, respectively. Moreover, the GC–MS results indicated that the flavor substance content in the HP group accounted for 30.80% among these four sample groups. This comprehensive analysis showed that high-pressure steaming could significantly improve the flavor quality of Tibetan sheep, providing a theoretical basis and empirical reference for the optimization of pre-treatment conditions and the processing of Tibetan sheep.
Full article
(This article belongs to the Special Issue Recent Advances in Flavor Chemistry in Meat, Poultry and Seafood: Safety Control and Quality Assessment)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Soluble Soybean Polysaccharide Improves Quality and Shelf Life of Peanut Butter
by
Liangchen Zhang, Liyou Zheng, Jian Sun, Sameh A. Korma, Fahad Al-Asmari, Mengxi Xie and Miao Yu
Foods 2025, 14(13), 2180; https://doi.org/10.3390/foods14132180 (registering DOI) - 22 Jun 2025
Abstract
Peanut butter, a plant-based spread, has gained global prominence due to the increasing consumer demand for nutritious convenience foods and the rising adoption of plant-based diets. However, oil separation during storage and transportation accelerates the oxidative rancidity and reduces the shelf life of
[...] Read more.
Peanut butter, a plant-based spread, has gained global prominence due to the increasing consumer demand for nutritious convenience foods and the rising adoption of plant-based diets. However, oil separation during storage and transportation accelerates the oxidative rancidity and reduces the shelf life of peanut butter. Enhancing peanut butter stability by minimizing oil separation is therefore essential. This study investigates the effect of soluble soybean polysaccharides (SSPSs) on the quality and shelf life of peanut butter. Optimal processing conditions were established by adding 1.7% SSPS (w/w), heating the mixture to 85 °C for 40 min, and then cooling it to 1 °C. The addition of SSPSs significantly increased the lightness of the peanut butter without altering its red-green color characteristics. Furthermore, SSPS incorporation improved its textural properties by increasing hardness and cohesiveness. Nutritional analysis showed that SSPS supplementation elevated proximate composition parameters (moisture, ash, carbohydrates, and fiber) while slightly reducing acid and peroxide values. Scanning electron microscopy revealed that SSPSs enhanced the internal network structure of peanut butter, inhibited oil migration, and reduced centrifugal emulsification rates. First-order kinetic models based on acid and peroxide values were developed to predict the effects of SSPSs on shelf life. Both the model predictions and experimental data confirmed that SSPS addition effectively extends the shelf life of peanut butter.
Full article
(This article belongs to the Special Issue Advanced Technologies and Applications for Processing, Preservation, Quality Monitoring, and Computational Modeling of Agri-Food Products)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Meat Quality and Fatty Acid Profile of Rams Fed Diets Enriched with Vegetable Oils of Varying Unsaturation Levels
by
Evyla Layssa Gonçalves Andrade, Kevily Henrique de Oliveira Soares de Lucena, José Morais Pereira Filho, Marcia Makaline Rodrigues Pereira, Ronaldo Lopes Oliveira, Analívia Martins Barbosa, Elzania Sales Pereira, Claudio Vaz Di Mambro, Marcos Jacome de Araújo and Leilson Rocha Bezerra
Foods 2025, 14(13), 2179; https://doi.org/10.3390/foods14132179 (registering DOI) - 22 Jun 2025
Abstract
Antioxidant feed additives, such as cashew nutshell liquid (CNSL), rich in phenolic compounds, have gained attention for improving animal production and meat quality. The study evaluated the dietary effects of blending CNSL (0.5%) with different vegetable oils (1.5%) varying in unsaturated fatty acid
[...] Read more.
Antioxidant feed additives, such as cashew nutshell liquid (CNSL), rich in phenolic compounds, have gained attention for improving animal production and meat quality. The study evaluated the dietary effects of blending CNSL (0.5%) with different vegetable oils (1.5%) varying in unsaturated fatty acid (UFA) profiles on the meat quality and fatty acid composition of muttons. Forty Santa Inês × Dorper crossbred rams (24.44 ± 1.5 kg) were allocated to five treatments for 70 days: CNSL combined with canola (MUFA-rich) compared to corn, soybean, sunflower, or cottonseed oils (PUFA-rich). The CNSL + canola blend improved meat quality, showing higher water-holding capacity and tenderness and lower cooking loss than CNSL + PUFA-rich oils (p < 0.05). Meat yellowness (b*) increased with CNSL + soybean or cottonseed blend. Meat proximate composition was unaffected (p > 0.05). Minor variations in specific fatty acids were observed, including higher C14:0 and C16:1 in canola and cottonseed + CNSL blend groups and greater EPA (C20:5 n–3) with soybean oil + CNSL blend (p < 0.05). The ∑n–6:∑n–3 ratio was highest with cottonseed and lowest with soybean oil (p < 0.05). Overall, combining CNSL with MUFA-rich oils, particularly canola, compared to PUFA oils, enhances meat quality while supporting the sustainable use of CNSL in ram diets.
Full article
(This article belongs to the Section Meat)
Open AccessReview
Impact of Temperature Stresses on Wheat Quality: A Focus on Starch and Protein Composition
by
Pei Han, Yaping Wang and Hui Sun
Foods 2025, 14(13), 2178; https://doi.org/10.3390/foods14132178 (registering DOI) - 22 Jun 2025
Abstract
With climate change, maintaining wheat quality has become essential for the functional properties, end-use, commodity value, and nutritional benefits of wheat flour. Temperature indirectly influences wheat quality by modulating grain size, starch and protein content, and the balance between these components. This review
[...] Read more.
With climate change, maintaining wheat quality has become essential for the functional properties, end-use, commodity value, and nutritional benefits of wheat flour. Temperature indirectly influences wheat quality by modulating grain size, starch and protein content, and the balance between these components. This review systematically analyzes temperature-mediated alterations in wheat grain quality, with particular emphasis on the two core components: starch and protein. Specifically, daytime warming generally increases protein content while reducing starch accumulation; however, temperatures exceeding 30 °C diminish key protein quality parameters (UPP%, Glu/Gli ratio, HMW-GS/LMW-GS ratio). Nighttime warming enhances protein quality but compromises starch content and yield potential. Conversely, under low-temperature conditions, starch content declines, whereas protein content is primarily influenced by genotypes and treated temperatures. Furthermore, the underlying mechanisms driving temperature-induced changes in wheat quality traits are discussed. However, the mechanisms of temperature effects have not been fully elucidated, and the results often vary between regions or over years. Thus, identifying conserved high/low-temperature resistance genes, QTLs, epialleles, and epiQTL, as well as developing corresponding molecular markers and epi-markers, is an urgent priority. Meanwhile, genome-editing tools such as CRISPR/Cas could serve as a powerful approach for creating new wheat germplasm with durable high/low-temperature resistance.
Full article
(This article belongs to the Special Issue Advancing Research on Quality and Nutrition in Cereals and Cereal-Based Foods)
►▼
Show Figures

Figure 1
Open AccessArticle
Power Converter Design for Pulsed Electric Field-Based Milk Processing: A Proof of Concept
by
Julieta Domínguez-Soberanes, Omar F. Ruiz-Martinez and Fernando Davalos Hernandez
Foods 2025, 14(13), 2177; https://doi.org/10.3390/foods14132177 (registering DOI) - 21 Jun 2025
Abstract
The microbiological safety of milk can be ensured through heat processing; however, this method has a negative effect on the sensory profile of this food product. Emerging technologies could be used as an alternative process for guaranteeing innocuity and maintaining sensory changes. An
[...] Read more.
The microbiological safety of milk can be ensured through heat processing; however, this method has a negative effect on the sensory profile of this food product. Emerging technologies could be used as an alternative process for guaranteeing innocuity and maintaining sensory changes. An alternative is to evaluate pulsed electric field (PEF) electroporation, which is a method of processing cells using short pulses of a strong electric field. PEF has the potential to be a type of alternative low-temperature pasteurization process that consists of high-frequency voltage pulsations. Specifically, the presented work is a proof of concept for the design of a converter capable of generating a PEF to feed a load that meets the impedance characteristics of milk. The proposed converter is simulated using PLECS software (4.9.6 version) under impedance change scenarios that emulate variations in milk throughout the entire process. This research proposes the modification of a classic Vienna rectifier (adding an MBC—Multilevel Boost Converter structure) to supply a pulsating signal that could be used for low-temperature processes of milk to guarantee proper pasteurization. The characteristics of the generated high-voltage pulse make it feasible to quickly process the real sample. The control law design considers a regulation loop to achieve a voltage in the range of kV and a switching-type control law that activates switches in MMC arrays. These switches are activated randomly to avoid transients that cause significant stress on them.
Full article
(This article belongs to the Special Issue Dairy Science: Emerging Trends in Research for Dairy Products)
Open AccessArticle
Critical Factors Affecting the Prevalence of Staphylococcus aureus and Staphylococcal Enterotoxins in Raw Milk Cheese in the Alpine Region of Austria, Italy, and Switzerland
by
Thomas F. H. Berger, Milena Brasca, Margaretha Buchner, Ueli Bütikofer, Bianca Castiglioni, Paola Cremonesi, Frieda Eliskases-Lechner, Lena Fritsch, Stefano Morandi and Livia Schwendimann
Foods 2025, 14(13), 2176; https://doi.org/10.3390/foods14132176 (registering DOI) - 21 Jun 2025
Abstract
In the Alpine region of Austria, Italy, and Switzerland, transhumance is widespread and the production of local traditional dairy products during summer is important. Raw milk cheeses are produced according to traditional recipes, using hurdles as a technique to guarantee food safety. In
[...] Read more.
In the Alpine region of Austria, Italy, and Switzerland, transhumance is widespread and the production of local traditional dairy products during summer is important. Raw milk cheeses are produced according to traditional recipes, using hurdles as a technique to guarantee food safety. In the present study, we aim to provide an overview of S. aureus and its enterotoxins in raw milk cheeses, identify the key parameters responsible for the enterotoxin production, and identify ways to improve food safety. The results demonstrate that safe artisanal raw milk cheese production is achievable under elementary conditions by applying effective hurdles, including high scalding temperatures or thermization, quality starter cultures, and robust milk quality management. The hurdle index (HI), which we introduce in this paper, is a promising tool for assessing and improving safety in raw milk cheese production.
Full article
(This article belongs to the Special Issue From Raw Milk to Final Product—An Integrated Approach for Controlling and Enhancing the Quality of Dairy Products)
►▼
Show Figures

Figure 1
Open AccessArticle
Effects of Sodium Hexametaphosphate on the Gel Properties and Structure of Glutaminase-Transaminase-Crosslinked Gelatin Gels
by
Junliang Chen, Xia Ding, Weiwei Cao, Xinyu Wei, Xin Jin, Qing Chang, Yiming Li, Linlin Li, Wenchao Liu, Tongxiang Yang, Xu Duan and Guangyue Ren
Foods 2025, 14(13), 2175; https://doi.org/10.3390/foods14132175 (registering DOI) - 21 Jun 2025
Abstract
Gelatin is a commonly used protein-based hydrogel. However, the thermo-reversible nature of gelatin makes it unstable at physiological and higher temperatures. Therefore, this study adopted phosphates and glutaminase transaminase (TG) to modify gelation and studied the effects of combining sodium hexametaphosphate (SHP) and
[...] Read more.
Gelatin is a commonly used protein-based hydrogel. However, the thermo-reversible nature of gelatin makes it unstable at physiological and higher temperatures. Therefore, this study adopted phosphates and glutaminase transaminase (TG) to modify gelation and studied the effects of combining sodium hexametaphosphate (SHP) and TG on the structure and gel properties of TG-crosslinked gelatin. This study focused on the effects of different SHP concentrations (0, 0.4, 0.8, 1.2, 1.6, 2.0, 2.4, 2.8 mmol/L) on the water distribution, textural properties, rheological properties, and microstructure of the TG-crosslinked gelatin gels. Results showed that the free water content in the TG-crosslinked gelatin gel declined with the increasing SHP addition when the concentration of SHP was kept below 2.0 mmol/L. The gel of TG-crosslinked gelatin at the SHP concentration of 1.6 mmol/L exhibited the highest hardness (304.258 g), chewiness (366.916 g) and η50. All the TG-crosslinked gelatin gels with SHP modification were non-Newtonian pseudoplastic fluids. The G′ and G″ of TG-crosslinked gelatin increased before the SHP concentration reached 1.6 mmol/L, and the TG-crosslinked gelatin with 1.6 mmol/L SHP exhibited the largest G″ and G′. The fluorescence intensity of TG-crosslinked gelatin with SHP concentration above 1.6 mmol/L decreased with the increasing SHP concentration. SHP modified the secondary structure of TG-crosslinked gelatin gels. The gel of TG-crosslinked gelatin with the SHP concentration of 1.6 mmol/L exhibited a porous, smooth, and dense network structure. This research provides references for modifying gelatin and the application of gels in the encapsulation of bioactive ingredients and probiotics.
Full article
(This article belongs to the Section Food Engineering and Technology)
►▼
Show Figures

Figure 1
Open AccessArticle
Effect of Sugarcane Polyphenol Extract on α-Amylase Inhibition and Mechanism Exploration
by
Yumei Wang, Jiulong An, Shenghong Yao, Chengfeng Zhang, Yanv Zhou, Lu Li and He Li
Foods 2025, 14(13), 2174; https://doi.org/10.3390/foods14132174 (registering DOI) - 21 Jun 2025
Abstract
Although α-amylase is crucial for postprandial glucose control, existing inhibitors present various side effects, necessitating the exploration of natural alternatives. The ability of sugarcane polyphenol (SP) to inhibit α-amylase remains unclear. This study assessed the inhibitory activity of SP via in vitro assays,
[...] Read more.
Although α-amylase is crucial for postprandial glucose control, existing inhibitors present various side effects, necessitating the exploration of natural alternatives. The ability of sugarcane polyphenol (SP) to inhibit α-amylase remains unclear. This study assessed the inhibitory activity of SP via in vitro assays, circular dichroism (CD), fluorescence quenching, and stability analysis, while the mechanism of action was elucidated using molecular docking and molecular dynamics (MD). The results showed that the IC50 of the SP was 0.841 ± 0.029 mg/mL, with proanthocyanidin-B1 (PC-B1) presenting the most potent effect (IC50 = 0.504 ± 0.019 mg/mL). CD and barycentric mean (BCM) analysis indicated that the complexes might limit substrate binding. The mechanistic assessment showed that the polyphenols bonded to the active enzyme pockets to form stable complexes with reduced key residue fluctuations. In conclusion, SP, especially PC-B1, effectively inhibited α-amylase activity via structural regulation and molecular interactions, providing a theoretical basis for developing natural hypoglycemic agents.
Full article
(This article belongs to the Special Issue Plant Bioactive Compounds and Its Potential as a Functional Food Ingredient)
►▼
Show Figures

Figure 1
Open AccessArticle
Impact Dynamics and Freezing Performance of Porcine Bile Droplets on Horizontal Cold Substrates: Towards Advanced and Sustainable Food Processing
by
Xinkang Hu, Bo Zhang, Libang Chen, Zhenpeng Zhang, Huanhuan Zhang, Xintong Du, Xu Wang, Lulu Zhang, Tao Yang and Chundu Wu
Foods 2025, 14(13), 2173; https://doi.org/10.3390/foods14132173 (registering DOI) - 21 Jun 2025
Abstract
With the development of the agro-processing industry, the efficient cryogenic treatment and resource utilization of porcine bile—a high-value byproduct—has received increasing attention. This study investigates the dynamic behaviour and freezing characteristics of porcine bile droplets upon impact on cold substrates under varying conditions
[...] Read more.
With the development of the agro-processing industry, the efficient cryogenic treatment and resource utilization of porcine bile—a high-value byproduct—has received increasing attention. This study investigates the dynamic behaviour and freezing characteristics of porcine bile droplets upon impact on cold substrates under varying conditions of surface temperature (−10 °C to −20 °C) and impact velocity (0.18–0.59 m/s). The effects of droplet size, dimensionless numbers (Weber, Reynolds, Bond, Ohnesorge, and Prandtl), and thermal gradients were systematically analyzed. A thermoelectric cooling substrate combined with high-speed imaging was used to quantitatively characterize the spreading ratio, retraction ratio, and freezing time of droplets. The results show that the maximum spreading ratio increases with higher impact velocity but decreases with lower substrate temperature. Lower substrate temperatures significantly shorten the freezing time, with a maximum reduction of up to 45%, particularly for smaller droplets. Droplets with high Weber numbers (We > 3) form flattened ice layers with preserved retraction patterns, while those with low Weber numbers (We < 1) generate smooth, hemispherical ice caps. For the first time, the thermophysical properties of porcine bile were incorporated into the framework of droplet impact dynamics on cryogenic surfaces. The findings reveal multiscale freezing mechanisms of biological fluids at low temperatures and provide a theoretical basis for optimizing processes such as freeze-drying and cryogenic sterilization in agro-product processing.
Full article
(This article belongs to the Special Issue Development of Green and Advanced Food Freezing/Anti-Freezing Technologies)
►▼
Show Figures

Figure 1
Open AccessArticle
The Cecal Distribution of Microalgal Pigments in Rats: Do Carotenoids and Chlorophylls Play a Pharmacobiotic Role?
by
Tatiele Casagrande do Nascimento, Patrícia Acosta Caetano, Marcylene Vieira da Silveira, Luiz Eduardo Lobo, Uashington Da Silva Riste, Mariany Costa Deprá, Maria Rosa Chitolina Schetinger, Cristiano Ragagnin de Menezes, Roger Wagner, Eduardo Jacob-Lopes and Leila Queiroz Zepka
Foods 2025, 14(13), 2172; https://doi.org/10.3390/foods14132172 (registering DOI) - 21 Jun 2025
Abstract
This study investigated the cecal distribution of lipophilic pigments (carotenoids and chlorophylls) from Scenedesmus obliquus and their effects on the activity of the intestinal microbiota in rats. Oleoresins containing different concentrations of microalgal pigments (from 0 to 600 µg·kg−1bw·d−1
[...] Read more.
This study investigated the cecal distribution of lipophilic pigments (carotenoids and chlorophylls) from Scenedesmus obliquus and their effects on the activity of the intestinal microbiota in rats. Oleoresins containing different concentrations of microalgal pigments (from 0 to 600 µg·kg−1bw·d−1), previously characterized by chromatographic and spectrometric analyses, were administered for four weeks. At the end of the intervention, cecal content samples were collected and analyzed for their pigment composition, short-chain fatty acids (SCFAs), and probiotic microbiota. Nine pigments were identified in the cecal samples, with all-trans-zeaxanthin and pheophytin being the most abundant in all groups. Furthermore, 15-cis-lutein, all-trans-β-cryptoxanthin, and 9-cis-β-carotene—found exclusively in microalgal oleoresin—were detected only in animals receiving doses above 300 µg·kg−1bw.day−1, indicating a link with the SCFA modulation. These supplementations significantly increased the levels of acetate (300 and 450 µg·kg−1bw·d−1 −13% and 14%), butyrate (300 µg kg−1bw·d−1 −19%), and propionate (600 µg·kg−1bw·d−1 −16%). Notably, 300 µg·kg−1bw·d−1 significantly increased Bifidobacterium and Lactobacillus populations. Overall, the pigment supplementation positively influenced the gut microbiota composition and SCFA production in a dose-dependent manner, particularly at 300 µg·kg−1bw·d−1. These results support the potential application of microalgal pigments as functional food ingredients or supplements with gut health benefits.
Full article
(This article belongs to the Special Issue Microalgae-Based Ingredients and Food Products: Biotechnological Production and Application)
►▼
Show Figures

Figure 1
Open AccessArticle
Screening and Relative Quantification of Migration from Novel Thermoplastic Starch and PBAT Blend Packaging
by
Phanwipa Wongphan, Elena Canellas, Cristina Nerín, Carlos Estremera, Nathdanai Harnkarnsujarit and Paula Vera
Foods 2025, 14(13), 2171; https://doi.org/10.3390/foods14132171 (registering DOI) - 21 Jun 2025
Abstract
A novel biodegradable food packaging material based on cassava thermoplastic starch (TPS) and polybutylene adipate terephthalate (PBAT) blends containing food preservatives was successfully developed using blown-film extrusion. This active packaging is designed to enhance the appearance, taste, and color of food products, while
[...] Read more.
A novel biodegradable food packaging material based on cassava thermoplastic starch (TPS) and polybutylene adipate terephthalate (PBAT) blends containing food preservatives was successfully developed using blown-film extrusion. This active packaging is designed to enhance the appearance, taste, and color of food products, while delaying quality deterioration. However, the incorporation of food preservatives directly influences consumer perception, as well as health and safety concerns. Therefore, this research aims to assess the risks associated with both intentionally added substances (IAS) and non-intentionally added substances (NIAS) present in the developed active packaging. The migration of both intentionally and non-intentionally added substances (IAS and NIAS) was evaluated using gas chromatography–mass spectrometry (GC-MS) and ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS). Fifteen different volatile compounds were detected, with the primary compound identified as 1,6-dioxacyclododecane-7,12-dione, originating from the PBAT component. This compound, along with others, resulted from the polymerization of adipic acid, terephthalic acid, and butanediol, forming linear and cyclic PBAT oligomers. Migration experiments were conducted using three food simulants—95% ethanol, 10% ethanol, and 3% acetic acid—over a period of 10 days at 60 °C. No migration above the detection limits of the analytical methods was observed for 3% acetic acid and 10% ethanol. However, migration studies with 95% ethanol revealed the presence of new compounds formed through interactions between the simulant and PBAT monomers or oligomers, indicating the packaging’s sensitivity to high-polarity food simulants. Nevertheless, the levels of these migrated compounds remained below the regulatory migration limits.
Full article
(This article belongs to the Special Issue Processing, Characterization and Valorization of Agri-Food and Its By-Products)
►▼
Show Figures

Figure 1
Open AccessArticle
Valorization of Olive Mill Wastewater by Selective Sequential Fermentation
by
Lara Signorello, Mattia Pia Arena, Marcello Brugnoli, Flora V. Romeo and Maria Gullo
Foods 2025, 14(13), 2170; https://doi.org/10.3390/foods14132170 (registering DOI) - 21 Jun 2025
Abstract
Olive mill wastewater is a by-product of olive oil extraction, characterized by a high concentration of organic matter, which presents a significant environmental challenge if not properly managed. This study was aimed at valorizing olive mill wastewater through selective fermentations to produce acetic
[...] Read more.
Olive mill wastewater is a by-product of olive oil extraction, characterized by a high concentration of organic matter, which presents a significant environmental challenge if not properly managed. This study was aimed at valorizing olive mill wastewater through selective fermentations to produce acetic beverages with low or no alcohol content. Olive mill wastewaters at three different dilutions (100%, 75% and 50%) were inoculated with Saccharomyces cerevisiae UMCC 855 for alcoholic fermentation. The resulting alcoholic product, with 75% olive mill wastewater, was then used as a substrate for acetic acid fermentation by Acetobacter pasteurianus UMCC 1754, employing both static and submerged acetification systems. The results showed that, at the end of the static acetification process, no residual ethanol was detected and that high concentrations of acetic and gluconic acid (46.85 and 44.87 g/L, respectively) were observed. In the submerged fermentation system, the final ethanol concentration was 24.74 g/L; the produced organic acids content reached 31.63 g/L of acetic acid and 39.90 g/L of gluconic acid. Furthermore, chemical analyses revealed that fermentation enhanced the antioxidant activity of olive mill wastewater. These results suggest promising insights for the valorization of olive mill wastewater.
Full article
(This article belongs to the Section Food Microbiology)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Aroma-Driven Differentiation of Wuyi Shuixian Tea Grades: The Pivotal Role of Linalool Revealed by OAV and Multivariate Analysis
by
Mengzhen Zhang, Ying Zhang, Yeyun Lin, Yuhua Wang, Jishuang Zou, Miaoen Qiu, Qingxu Zhang, Jianghua Ye, Xiaoli Jia, Haibin He, Haibin Wang and Qi Zhang
Foods 2025, 14(13), 2169; https://doi.org/10.3390/foods14132169 (registering DOI) - 21 Jun 2025
Abstract
Wuyi Shuixian tea, a premium oolong tea known for its complex floral-fruity aroma, exhibits significant quality variations across different grades. This study systematically analyzed the aroma characteristics and key fragrant compounds of four grades (Grand Prize SA, First Prize SB, Outstanding Award SC,
[...] Read more.
Wuyi Shuixian tea, a premium oolong tea known for its complex floral-fruity aroma, exhibits significant quality variations across different grades. This study systematically analyzed the aroma characteristics and key fragrant compounds of four grades (Grand Prize SA, First Prize SB, Outstanding Award SC, and Non-award SD) using headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS), odor activity value (OAV) analysis, and multivariate statistical methods. A total of 159 volatile compounds were identified, with similar compound categories but distinct concentration gradients between grades. OAV-splitting analysis (based on OAV ≥ 1 as the threshold for aroma activity) identified β-ionone (fruity), octanal (fatty), and linalool (floral) as core aroma-active contributors, as their OAV values significantly exceeded 10 in awarded grades (SA, SB, SC), indicating dominant roles in sensory perception. Notably, linalool, a floral marker, showed a concentration gradient (SA > SB > SC) and was absent in SD, serving as a critical determinant of grade differentiation. Orthogonal partial least squares-discriminant analysis (OPLS-DA) further distinguished awarded grades (SA, SB, SC) by balanced fruity, floral, and woody notes, while SD lacked floral traits and exhibited burnt aromas. This classification was supported by hierarchical clustering analysis (HCA) of volatile profiles and principal component analysis (PCA). Electronic nose data validated these findings, showing strong correlations between sensor responses (W5S/W2W) and key compounds like hexanal and β-ionone. This study elucidates the molecular basis of aroma-driven quality grading in Wuyi Shuixian tea, providing a scientific framework for optimizing processing techniques and enhancing quality evaluation standards. The integration of chemical profiling with sensory attributes advances precision in tea industry practices, bridging traditional grading with objective analytical metrics.
Full article
(This article belongs to the Special Issue Tea Technology and Resource Utilization)
►▼
Show Figures

Figure 1
Open AccessReview
Exploring Formation and Control of Hazards in Thermal Processing for Food Safety
by
Zeyan Liu, Shujie Gao, Zhecong Yuan, Renqing Yang, Xinai Zhang, Hany S. El-Mesery, Xiaoli Dai, Wenjie Lu and Rongjin Xu
Foods 2025, 14(13), 2168; https://doi.org/10.3390/foods14132168 (registering DOI) - 21 Jun 2025
Abstract
Thermal-processed foods like baked, smoked, and fried products are popular for their unique aroma, taste, and color. However, thermal processing can generate various contaminants via Maillard reaction, lipid oxidation, and thermal degradation, negatively impacting human health. This review summarizes the formation pathways, influencing
[...] Read more.
Thermal-processed foods like baked, smoked, and fried products are popular for their unique aroma, taste, and color. However, thermal processing can generate various contaminants via Maillard reaction, lipid oxidation, and thermal degradation, negatively impacting human health. This review summarizes the formation pathways, influencing factors, and tracing approaches of potential hazards in thermally processed foods, such as polycyclic aromatic hydrocarbons (PAHs), heterocyclic aromatic amines (HAAs), furan, acrylamide (AA), trans fatty acids (TFAs), advanced glycation end-products (AGEs), sterol oxide. The formation pathways are explored through understanding high free radical activity and multiple active intermediates. Control patterns are uncovered by adjusting processing conditions and food composition and adding antioxidants, aiming to inhibit hazards and enhance the safety of thermal-processed foods.
Full article
(This article belongs to the Section Food Quality and Safety)
►▼
Show Figures

Figure 1
Open AccessArticle
The Potential of Combining Faba Bean (Vicia faba L.) and Pea Pod (Pisum sativum L.) Flours to Enhance the Nutritional Qualities of Food Products
by
Khaoula Ben Said, Amel Hedhili, Sihem Bellagha, Hela Gliguem and Marie Dufrechou
Foods 2025, 14(13), 2167; https://doi.org/10.3390/foods14132167 (registering DOI) - 21 Jun 2025
Abstract
Legumes have been identified as a key element of food innovation and excellent candidates for ensuring sustainability in food systems. However, certain legumes, such as faba beans and legume by-products, such as pea pods, are currently mainly being used in animal feed rather
[...] Read more.
Legumes have been identified as a key element of food innovation and excellent candidates for ensuring sustainability in food systems. However, certain legumes, such as faba beans and legume by-products, such as pea pods, are currently mainly being used in animal feed rather than exploited and valued in human nutrition. In this study, the nutritional properties, anti-nutritional factors, and in vitro protein digestibility of pea pod flour and raw and thermally treated (80, 120, 150, and 180 °C during 30 min) faba bean flours were investigated. For pea pod flours, the results showed a very interesting protein content (12.13%) and insoluble fibers (37.45%), as well as appreciable amounts of minerals, mainly calcium, potassium, magnesium, manganese, and iron. For faba bean flours, thermal treatment did not significantly affect the crude protein, ash, starch, and fat contents of the processed beans. Meanwhile, compared with raw faba bean flours, thermal treatment significantly decreased insoluble dietary fibers, anti-nutritional factors such as phytic acid, tannins, trypsin inhibitors, and alpha-galactosides and progressively improved the in vitro protein digestibility by 7,7%. In conclusion, faba bean and pea pod flours show significant potential as novel ingredients in the food industry. Their combination will enable the development of protein, fiber, and mineral-rich food products.
Full article
(This article belongs to the Special Issue Agro-Food Chain By-Products and Plant Origin Foods to Obtain High-Value-Added Foods—2nd Edition)

Journal Menu
► ▼ Journal Menu-
- Foods Home
- Aims & Scope
- Editorial Board
- Reviewer Board
- Topical Advisory Panel
- Instructions for Authors
- Special Issues
- Topics
- Sections & Collections
- Article Processing Charge
- Indexing & Archiving
- Editor’s Choice Articles
- Most Cited & Viewed
- Journal Statistics
- Journal History
- Journal Awards
- Society Collaborations
- Conferences
- Editorial Office
Journal Browser
► ▼ Journal BrowserHighly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Chemistry, Foods, IJMS, Molecules, Separations
Recent Trends and Advances in Food Authentication and Traceability
Topic Editors: Michael Kontominas, Anastasia BadekaDeadline: 30 June 2025
Topic in
Biomolecules, Energies, Foods, IJMS, Polymers
Microbes and Their Products for Sustainable Human Life
Topic Editors: Shashi Kant Bhatia, Ranjit GuravDeadline: 7 July 2025
Topic in
Biomolecules, Foods, Metabolites, Microorganisms, Pathogens, Bacteria
Bioinformatics, Machine Learning and Risk Assessment in Food Industry
Topic Editors: Bing Niu, Suren Rao Sooranna, Pufeng DuDeadline: 31 July 2025
Topic in
Applied Microbiology, Microorganisms, Pharmaceuticals, Pharmaceutics, Foods
Probiotics: New Avenues
Topic Editors: Daniela Machado, José Carlos AndradeDeadline: 15 August 2025

Conferences
28–30 October 2025
[Foods 2025] Call for Abstracts—The 6th International Electronic Conference on Foods: Future Horizons in Foods and Sustainability

Special Issues
Special Issue in
Foods
Food Grade Immobilisation Systems for Enzymes
Guest Editor: Jean-Christophe JacquierDeadline: 23 June 2025
Special Issue in
Foods
Food Additives and Human Health: Valuable Source, Safety and Regulatory Mechanism
Guest Editors: Ligia Rebelo Gomes, Elsa F. Vieira, Cristina Delerue-MatosDeadline: 25 June 2025
Special Issue in
Foods
Bioactive Packaging for Preventing Food Spoilage
Guest Editor: Xiaoli LiuDeadline: 25 June 2025
Special Issue in
Foods
Food Environmental Pollution Monitoring, the Transfer of Hazardous Materials in Soil–Crop Plant Systems and a Risk Assessment of Emerging Contaminants in Food
Guest Editors: Guozhong Feng, Qing YanDeadline: 25 June 2025
Topical Collections
Topical Collection in
Foods
Reviews on Food Microbiology, Foodborne Pathogens, and Probiotics
Collection Editor: Arun K. Bhunia
Topical Collection in
Foods
Milk and Dairy Products: Chemistry, Structure, Processing and Properties
Collection Editor: Débora Parra Baptista
Topical Collection in
Foods
Advances in Tea Chemistry
Collection Editors: Yongquan Xu, Ying Gao, Qingqing Cao